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a b s t r a c t 

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise 

delivery of radiation to the treatment site is the management of internal motion caused by the patient’s 

breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy 

(IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real- 

time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and 

non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn’t allow for tar- 

get tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a 

novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution 

includes an image similarity-based rigid alignment module combined with a deep deformable motion 

model. Leveraging the representational capabilities of convolutional autoencoders, our deformable mo- 

tion model associates complex 3D deformations with 2D surrogate US images through a common learned 

low dimensional representation. The model is trained on a variety of deformations and anatomies which 

enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During 

inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breath- 

ing phases and a live 2D surrogate image representing the current state of the organ. In this study, the 

presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well 

as anatomical target tracking performance. We report results that surpass comparable methodologies in 

both metric categories with a mean tracking error of 3.5 ±2.4 mm, demonstrating the potential of this 

technique for IGRT. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Radiation therapy (RT) is used in more than 50% of cancer pa- 

ients to treat and control disease progression ( Jaffray, 2015 ). Ex- 

ernal beam radiotherapy (EBRT), a specific modality of RT, uses an 

xternal radiation source and collimators to deliver precise doses 

f radiation to the tumor site from different orientations around 

he patient’s body. The goal of EBRT is to deliver enough radia- 

ion to damage the genetic material of cancerous cells, thus dis- 

bling them from dividing and growing the cancerous tumor fur- 

her ( Baumann et al., 2008 ). However, radiation is not only harm- 

ul to cancerous cells, it can also damage healthy cells ( Dormand 

t al., 2005 ), making the precision of RT delivery systems cru- 

ial, especially for organs at risk. In the case of EBRT, the most 

omplex sites to treat are the ones that experience severe mo- 
∗ Corresponding author. 
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361-8415/© 2021 Elsevier B.V. All rights reserved. 
ion induced by the patient’s breathing. Indeed, respiratory motion 

oses great challenges to the administration during EBRT due to 

arge motion organs such as the liver ( Hawkes et al., 2005 ). Gen-

rally, the motion of abdominal organs due to respiration is most 

rominent in the superior-inferior (SI) direction with no more than 

 mm of motion in the anterior-posterior (AP) and lateral direc- 

ions ( Keall et al., 2006 ). The average displacement in the SI di- 

ection of the liver during shallow breathing varies between 13–

5 mm ( Davies et al., 1994; Weiss et al., 1972 ). The average dis-

lacement for deep breathing was determined to be 55 mm by 

uramo et al. (1984) This forces radio-oncologists to increase the 

reatment margins to reduce the probability of cancer recurrence, 

hus increasing toxicity to healthy tissues ( Keall et al., 2006 ). In an

ttempt to minimize the negative effects of respiratory motion on 

he efficiency of EBRT, a variety of respiratory motion management 

echniques have been proposed and used in clinical settings. 

For respiratory gating approaches, the treatment is adminis- 

ered only within a predefined range of the patient’s respiratory 

https://doi.org/10.1016/j.media.2021.102260
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102260&domain=pdf
mailto:tal.mezheritsky@polymtl.ca
https://doi.org/10.1016/j.media.2021.102260
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ycle using breath-holds. On the other hand, the forced shallow 

reathing technique does not require the patient to temporarily 

top breathing, however it reduces the amplitude of respiratory 

otion by applying pressure to the patient’s abdomen ( Keall et al., 

006 ). While improving the precision of EBRT, the aforementioned 

echniques bear limitations such as increased treatment time and 

hysical discomfort to the patient. For image-guided radiotherapy 

IGRT), the aim is to use imaging to track the treatment target at 

ll times during the administration of radiation to the tumor site. 

s the target is tracked, the delivery system adjusts its beam to ac- 

ount for the displacement of the tumor inside the patient’s body. 

herefore, IGRT has the potential of reducing the amount of dam- 

ge caused to healthy tissues due to large treatment margins, all 

hile allowing the patient to breath freely during the procedure 

 Brock and Dawson, 2010 ). 

A wide range of imaging modalities can be used in the con- 

ext of IGRT. X-ray imaging with or without the implantation of 

ducial markers is often used in clinical practice. An early work 

y Schweikard et al. (20 0 0) presented a method to compensate 

or respiratory motion during radiotherapy by using a correla- 

ion model between the displacement of implanted X-ray mark- 

rs and infrared skin surface images. The main drawback of us- 

ng X-ray imaging for motion compensation is that the additional 

adiation dose X-ray imparts reduces the imaging frame-rate that 

an be used. Similarly, cone-beam computed tomography (CBCT) 

annot be used in real time during treatment due to significant 

xposure to ionizing radiation. In recent years systems that use 

RI for IGRT have emerged, however they aren’t widely available 

et ( Western et al., 2015 ). In contrast, ultrasound (US) is a non-

onizing, portable and inexpensive medical imaging modality that 

ircumvents most of the disadvantages of other imaging modalities 

ithin the scope of IGRT. As current US system are capable of 2D, 

D and 3D+t imaging, they can be used both in the planning and 

reatment stages of the RT workflow ( Fontanarosa et al., 2015 ). For 

xample, Sawada et al. (2004) presented a novel respiratory gated 

adiation therapy system which allowed to trigger the treatment 

eam using image correlation between US images acquired on 3 

rthogonal planes and a reference volume. Although the study was 

nly carried out on a phantom setup, it presented US imaging as 

 viable modality for tracking moving targets during IGRT treat- 

ents. 

US imaging can also be used to track the motion of the prostate 

sing 3D to 2D US registration. Gillies et al. (2017) proposed a 

eal-time automatic motion correction algorithm for fusion-based 

rostate biopsy systems. Their approach was able to achieve an 

verage error of 1.6 ± 0.6 mm. Selmi et al. (2018) proposed a 

odified version of the iterative closest point algorithm (ICP) to 

erform real-time navigation in computer-assisted prostate biopsy 

ystems. Matched features extracted from live 2D US images and 

 3D US volume are used to drive the optimization process. The 

uthors reported and average target registration error of 3.91 ±
.22 mm. 

Samei et al. (2018) proposed a real-time deformable registration 

echnique. The proposed gradient descent technique is applied be- 

ween a thin volume consisting of consecutive intraoperative 2-D 

ransrectal ultrasound (TRUS) images and a preoperative 3D TRUS 

olume. The reported average accuracy for a dataset of 11 patients 

as 0.72 mm with an initial target displacement of 4.62 mm. 

Current US-based abdominal IGRT systems rely on 2D imaging 

o track targets during imaging, even though targets are known to 

xperience complex 3D trajectories especially in organs such as the 

iver and lungs ( Keall et al., 2006 ). Therefore, 3D US imaging can

e useful in IGRT applications. Clinically available 3D US matrix- 

rray probes provide complete anatomical information of the tis- 

ues surrounding the tumor target, still the acquisition frame-rate 

s significantly lower than in 2D US imaging and the considerable 
2 
torage size of 3D volumes significantly increases processing and 

omputing times, making it difficult to use for real-time IGRT ap- 

lications ( Western et al., 2015 ). As such, we present a hybrid solu- 

ion employing both 2D and 3D US for US-guided EBRT, by learning 

he relationship between 2D images and 3D deformation fields for 

eal-time inference of volumetric US imaging. 

.1. Related works 

The task of tracking anatomical targets in 3D US has gener- 

ted significant interest, leading to open challenges like CLUST15 

 Luca et al., 2015 ), providing a common datasets to com- 

are solutions both on 2D and 3D temporal US sequences. 

hepard et al. (2017) proposed a block matching multi-step track- 

ng approach where each step accounted for an increasingly finer 

evel of motion. Ozkan et al. (2017) proposed a tracking technique 

ased on supporter features surrounding the tracking target. By 

racking the supporters, the tracking accuracy of the desired tar- 

et was improved. Both approaches achieved sub-millimeter per- 

ormance, however they were only tested on 2D images. Methods 

ested on 3D US data included Banerjee et al. (2015) , registering 

 global point set across temporal volumes using block matching, 

ollowed with a 3D registration of a local point set around the 

natomical landmark, while Royer et al. (2017) represented the 3D 

arget as a model of tetrahedral cells and vertices. The internal and 

xternal motion of the target mesh were estimated using a me- 

hanical model and an intensity based approach respectively. In 

eneral, local tracking methods share a common disadvantage in 

ailing to provide information about the motion of surrounding tis- 

ues which could be useful for dose re-planning ( McClelland et al., 

013 ). 

Global tracking solutions, on the other hand, attempt to deter- 

ine the new position of a target by providing the motion expe- 

ienced by its surroundings and the treated organ as a whole. The 

xpected output becomes a motion field that spans the entire vol- 

me, which can be used not only to track treatment targets but 

lso to adjust treatment planning and dose calculation. Obtaining 

omplex 3D motion fields by leveraging inputs of a lower dimen- 

ion has been commonly achieved in the context of IGRT through 

he use of respiratory motion modelling ( McClelland, 2013 ). Surro- 

ate signals can be obtained through 1D signals such as spirome- 

ry, skin surface motion tracking or 2D images of the treated organ, 

hich can be used during treatment to infer the 3D motion field 

xperienced at the time of the procedure ( McClelland, 2013 ). How- 

ver, very few works focused on respiratory motion modelling for 

D US due to the inherent difficulties such as low image quality 

nd presence of unique artifacts ( McClelland et al., 2013 ). Never- 

heless, respiratory motion modelling remains flexible in terms of 

odality choice, even allowing to use one modality as a surrogate 

or another in certain applications ( Preiswerk et al., 2014 ). 

A first group of global tracking solutions based on respiratory 

otion modelling are patient-specific, where before treatment, the 

cquisition of 3D+t data along with surrogate signals is performed 

n the patient. The 3D motion is then obtained through registra- 

ion of the 3D+t data to a reference volume chosen at a certain res- 

iratory phase. Several approaches establishing a correspondence 

etween surrogate signals and motion fields have been proposed. 

rnold et al. (2011) created an atlas of motion from 3D+t MRI data, 

hich is recovered using a respiratory signal acquired during treat- 

ent. Noorda et al. (2016) acquired cine MRI slices at 6 positions 

cross the liver and registered them to a reference 3D MRI vol- 

me to obtain a lookup table of extrapolated 3D deformation fields 

orresponding to a variety of liver states. Among the works on 

atient-specific respiratory motion models, principal component 

nalysis (PCA) stands out as a reference, using a linear decom- 

osition of the patient-specific 3D motion fields, which is recov- 
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red using a surrogate signal, such as a 2D navigator ( King et al.,

012 ). Other means to obtain PCA combination coefficients include 

aximizing image similarity between acquired surrogate and de- 

ormed reference volume slice ( Harris et al., 2016; Stemkens et al., 

016; Pham et al., 2019 ) or sparse block matching ( Ha et al., 2019 ).

cClelland et al. (2017) proposed to unify the steps of motion cal- 

ulation and establish the surrogate correspondences which are 

sually separated. Their general framework showed many advan- 

ages, however high computation time limits its use in real-time 

pplications. The main drawback with these approaches is that 

atient-specific 3D+t data is needed in order to model the respi- 

atory motion patterns, which is far from being widely accessible 

n all institutions. 

The second group of global motion models, referred to as 

opulation-based or cross-population models, aims to capture a 

ider variety of motion fields by capturing motion variability 

cross a population of patients. Samei et al. (2012) introduced the 

oncept of exemplar models, where each patient in the data set 

as used to fit exemplar patient-specific models. For new patients, 

he obtained surrogate is compared to the exemplar models and an 

ptimized linear combination of all the patient-specific models is 

btained. Paganelli et al. (2018) proposed a global respiratory mo- 

ion model that directly infers the complete 3D deformation field 

y extrapolating the registration of interleaved 2D MRI surrogates 

ith the planning MRI volume. Just as subject-specific models, PCA 

s also widely used when constructing population based respira- 

ory motion models ( Boye et al., 2013; Tanner et al., 2016; Jud 

t al., 2017 ). Preiswerk et al. (2014) proposed to combine informa- 

ion from 2D US images with a PCA respiratory motion model to 

redict the 3D motion of the liver acquired using MRI. However, 

he main drawback of using PCA is the requirement of establish- 

ng inter-patient correspondences, which is a time-consuming and 

ften inaccurate process. 

Deep learning has allowed to explore new solutions for the 

roblem of target tracking in IGRT. Local tracking solutions in 2D 

 Huang et al., 2019; Liu et al., 2020 ) and 3D ( He et al., 2019 ) us-

ng convolutional neural networks (CNN) have achieved accura- 

ies within 0.69-1.89 mm. Giger et al. (2018) proposed a subject- 

pecific respiratory motion model based on conditional generative 

dversarial networks (cGAN). The cGAN learned to predict 3D de- 

ormations of MRI based on a simultaneously acquired 2D US sur- 

ogate. However this method was only validated on three sub- 

ects. Romaguera et al. (2020) introduced a global respiratory mo- 

ion model based on CNN and convolutional long short-term mem- 

ry (CLSTM) units to perform in-plane target tracking with up to 

 timesteps prediction. The model was validated on 3 imaging 

odalities (MRI, CT and US), however it can only be applied to 

D images. Mezheritsky et al. (2020) proposed a respiratory mo- 

ion model to generate up-to-date US volumes by combining image 

eatures from a reference 3D volume and a current 2D US image. 

hile the model showed promise, its validation was limited to a 

mall testing set and tracking of a single anatomical landmark. 

.2. Contributions 

In this work, a novel motion modelling framework is presented. 

s shown in Fig. 1 , the deep motion model first learns to link com-

lex 3D motion fields with 2D image surrogates through a com- 

on latent encoding. The model also learns to recover the 3D mo- 

ion fields from the latent encoding. On the day of treatment, the 

roposed framework, composed of a rigid alignment module and 

he trained deep motion model, is able to process real-time 2D US 

mages of previously unseen cases one by one to provide three- 

imensional information about the state of the liver. Once sent to 

he treatment unit, this information can be used to adjust radiation 

elivery as needed. 
3 
The proposed deep motion model is able to capture a wide va- 

iety of motion patterns while also taking into account subject- 

pecific anatomical information to improve its prediction. Our pro- 

osed framework does not require prior 3D+t acquisitions for new 

ubjects and removes the need to establish inter-subject corre- 

pondences within the training 3D+t data set, an important advan- 

age over previously presented global motion models. 

As such, our main contributions are: 

• A novel real-time motion modelling framework composed of a 

rigid alignment module and a deep deformable model evalu- 

ated on 20 free-breathing subjects. 
• A convolutional autoencoder motion model which learns to re- 

cover complex 3D deformations for a previously unseen subject 

with only a pair of pre-treatment volumes and a single 2D im- 

age acquired in real-time. 
• The introduction of an image similarity-based rigid alignment 

strategy to cope with large displacements of the treated organ. 

. Methods 

In this section, we present our motion modelling framework. 

e first formally define the problem at hand. Next, we describe 

n detail each module composing the proposed motion modelling 

ramework as well as its training procedure. Finally, details of the 

ramework’s implementation are provided. 

.1. Problem formulation 

We consider a dataset of free-breathing 3D+t US acquisitions 

f the liver from a population of N individuals. For each subject 

 i ∈ (s 1 , s 2 , . . . s N ) , a sequence of 3D US volumes V = (V 1 , V 2 , . . . , V t )

s defined, spanning a given time period [0 , t] . To obtain a tempo-

al sequence of 2D surrogate images I = (I 1 , I 2 , . . . , I t ) , the central

lice of each volume V t ∈ V is extracted from the chosen anatom- 

cal plane. In each sequence V , two reference volumes are iden- 

ified at exhale (V exh ) and inhale (V inh ) respiratory phases. The 

ationale for this choice is to cover the entire range of variation 

uring a breathing cycle. The motion observed in the volume se- 

uence can be measured by performing rigid and non-rigid reg- 

stration between V re f and the current volume V t ∈ V . Since the 

xhale phase is a more easily reproducible position for the liver, 

 exh is chosen as V re f . Hence, the sequence of rigid transforma- 

ions T = (T 1 , T 2 , . . . , T t ) and deformation vector fields (DVF) � =
φ1 , φ2 , . . . , φt ) individually represent the deformations that need 

o be applied to V re f in order to obtain the corresponding volume 

 t . The first step is to compute a 3D rigid transformation between 

 re f and V t using a sinle 2D US image I t , V exh and V inh . Having the 

igidly aligned reference volume ( V 
rigid 

t = T (V exh , T t ) ), the second

tep is to learn the deformable component to be applied on V 
rigid 

t 

o match V t . Therefore, the prediction of each temporal volume is 

ased only on V exh , V inh and I t as inputs. 

.2. Proposed framework 

In the following subsections, we present details about each 

omponent of our proposed solution. As shown in Fig. 2 , our solu- 

ion is composed of 2 main components: a rigid alignment module 

nd a deformable motion model, generating 3D volumes in real- 

ime. The rigid alignment module applies an initial rigid displace- 

ent to the reference volume in order to coarsely align it with 

he current position of the liver. The rigidly aligned volume is then 

ed to the deformable motion model which applies finer localized 

eformations. The deformable motion model generates its output 

rom a learned low-dimensional encoding of the organ’s deforma- 

ion field and subject-specific features included as skip connec- 

ions. 
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Fig. 1. Overall training and clinical workflow for the proposed respiratory motion modelling framework. (a) A deep respiratory motion model is first trained to associate 

complex 3D motion fields and 2D surrogate US images through a common latent encoding from a population of subjects. Then, the model is trained to recover the correct 

input 3D motion fields from the learned latent encoding. (b) On the day of treatment, two pre-treatment volumes (inhale and exhale) are first acquired before treatment for 

an unseen subject. During treatment, the pre-treatment volumes and real-time 2D images are fed into the proposed framework one by one, generating one deformed 3D 

volume of the imaged organ per input 2D image. The resulting real-time stream of 3D volumes can be used to adjust the administration of radiotherapy in real-time. 

Fig. 2. Schematic representation of the proposed motion modelling framework. (a) First, a rigid transformation is applied to the reference volume in order to coarsely align 

it with the current state of the liver. The transformation is based on the similarity of the current surrogate 2D image I t to the central slices of two pre-treatment volumes 

acquired at exhale I exh and inhale I inh . (b) Once the rigid alignment is performed, the motion autoencoder receives the registration field between V t and V rigid 
t computed by 

the deformable registration network. The motion field is compressed into the latent vector z and then recovered with the use of prior subject-specific features from the 

auxiliary encoder. To be able to generate motion fields in the absence of the motion encoder, the 2D surrogate encoder learns to replicate the latent encoding z from the 

surrogate 2D image. The generated motion field is used to warp V rigid 
t through the spatial transformer network (STN) thereby generating the predicted volume ̃  V t . 
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.2.1. Rigid alignment 

Figure 2 a illustrates the proposed approach to rigidly align V re f 

o V t during treatment by using two pre-treatment volumes at the 

xtreme respiratory phases and a single 2D US image I t . Before 

reatment, two volumes acquired at exhale ( V exh ) and inhale ( V inh )

hases are rigidly registered. It is assumed that during treatment, 

he liver will be located within the exhale-inhale range obtained 

efore treatment. Since the pre-treatment volume at exhale corre- 

ponds to V re f , the rigid transformations that will be required to 

lign V re f during treatment are bound between the null transfor- 

ation and the exhale-inhale transformation. To identify the res- 

iratory phase in which the liver is located during treatment, the 

urrent 2D US frame I t is compared to the corresponding central 

lices of the pre-treatment volumes I exh and I inh using an image 

imilarity metric L sim 

. The similarity measures L exh and L inh are 
b

4 
sed to compute a scaling factor σ , as follows: 

= 

L exh 

L exh + L inh 

∈ (0 , 1] . (1) 

his factor tends to 0 when I t is similar to I exh and dissimilar to I inh 

nd tends to 1 in the opposite scenario. In this manner, when the 

urrent state of the liver is close to the reference volume (i.e. ex- 

ale), a relatively small displacement is applied. As the state of the 

iver approaches the one in I inh , σ gradually increases and so does 

he amplitude of the displacement. The obtained value is applied 

o the exhale-inhale transformation through element-wise multi- 

lication to produce a scaled version which is finally used to gen- 

rate V 
rigid 

t by applying a rigid transform to V re f . For this work, the 

ean Squared Error (MSE) was chosen as L sim 

, as it was found to 

e the more efficient when comparing mono-modal images. It is 
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Fig. 3. Schematic representation of the generation of φre f . The surrogate 2D image 

is replicated to match the dimensions of V rigid 
t . Both volumes are then processed 

by the deformable registration network to obtain an approximation of the DVF to 

predict. 
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ssumed that I t , V exh and V inh were all acquired in approximately 

he same orientation and anatomical location. 

.2.2. Deformable motion modelling 

Once rigidly aligned, V 
rigid 

t is fed to the deep deformable mo- 

ion model shown in Fig. 2 b. The goal of this step is to ap-

ly a non-rigid 3D deformation φt to V 
rigid 

t in order to obtain 

he final 3D output volume ˜ V t which represents the current state 

f the imaged organ ( ̃  V t = T (V rigid 
t , φt ) ). First, a pre-trained de-

ormable registration neural network is used to generate the de- 

ormation field φt between V 
rigid 

t and the current volume V t . In this 

ork, the U-Net like deformable registration network proposed by 

alakrishnan et al. (2019) is used for this step. It is important to 

ote that any deep learning based deformable registration network 

an be used within our framework. Then, the convolutional motion 

utoencoder is trained to compress each 3D motion field φt ∈ �
nto a corresponding low dimensional latent encoding z. The com- 

ression is followed by the recovery of the input motion fields 

rom the obtained latent encoding. Subject-specific information is 

lso incorporated through skip connections which originate from a 

eparate auxiliary encoder. Since the 3D motion fields � that were 

sed as inputs to the motion autoencoder are not available dur- 

ng inference, a separate 2D surrogate encoder is trained to pre- 

ict the latent encoding z with a different input. Specifically, the 

D surrogate encoder learns to obtain a latent encoding ̃  z as sim- 

lar as possible to z by only using a single 2D image of the liver’s

urrent state as input. By creating this shared latent representation 

etween the 3D motion autoencoder and the 2D surrogate encoder, 

he model is capable to infer the complete 3D motion field φt with 

nly one 2D image as input. To obtain the final predicted volume 
 

 t , a spatial transformation network (STN) warps V 
rigid 

t with the 

enerated 3D motion field 

˜ φt . 

Motion autoencoder The central module of the deformable 

otion model is the 3D motion autoencoder. Its role is to learn 

ow to compress and recover the input φt so that during infer- 

nce, only the latent representation ̃

 z is needed to obtain 

˜ φt . The 

ain components of the autoencoder are the 3D motion encoder 

nd decoder. Both are fully convolutional networks that use strided 

ownsampling operations to reduce the spatial dimension of the 

nput. At the bottleneck of the autoencoder, a latent vector z of 

ize 3072 is obtained by passing the 3D motion encoder’s output 

hrough one fully connected layer. It is important to note that the 

imension of the latent vector z should be determined empirically 

or this application. An excessively small latent dimension might 

imit the autoencoder’s representational capabilities, while a too 

arge of a latent dimension could lead to an over-parametrization 

f the network. To recover ˜ φt , z is reshaped and passed to the 3D 

otion decoder. The 3D motion decoder uses transposed convolu- 

ions to gradually upsample z back to its original size. Detailed in- 

ormation about the implementation of the network’s components 

s presented in Section 2.3 . 

Auxiliary autoencoder As the compression of φt inevitably in- 

olves loss of information, the 3D motion decoder bears the com- 

licated task of recreating that lost information using the latent 

ector z. This is especially challenging when attempted on a previ- 

usly unseen anatomy during inference. Therefore, to improve the 

ecoder’s performance, subject-specific anatomical information is 

rovided at the decoding stage through the use of skip connec- 

ions ( Drozdzal et al., 2016 ) which carry features from a reference 

VF ( φre f ). Figure 3 shows how φre f is obtained at any time t . 

irst, I t is replicated along the third dimension to match the size 

f V 
rigid 

t . This step is required by the deformable registration net- 

ork which is trained on input volume pairs of the same size. The 

esulting volume is denoted as V rep . Then, to obtain φre f , the de- 

ormable registration network aligns V 
rigid 

with V rep . Before being 
t 

5 
ncluded in the decoding process, φre f is processed by the auxil- 

ary encoder which has an identical architecture as the 3D motion 

ncoder. Once encoded, features from each layer of the auxiliary 

ncoder can be concatenated with the features of the analogous 

ecoding layer of the 3D motion decoder. Those skip connections 

rovide the 3D motion decoder with an approximation of the main 

eatures of the expected output DVF for the novel unseen anatomy. 

t is important to note that the number of skip connections can 

reatly change the behaviour of the network. The optimal number 

f skip connections to use in this application is determined empir- 

cally and shown in Section 3 . 

Surrogate encoder The surrogate encoder aims to regress a la- 

ent representation ̃

 z as similar to z from a surrogate image I t . Us- 

ng this scheme, the 3D deformations are associated with partial 

bservations through their common latent representation. This is 

chieved by minimizing the following expression: 

rg min || z, ˜ z || 2 2 = arg min 

θ,ω 
|| f θ (φt ) , g ω (I t ) || 2 2 (2)

here f θ and g ω are functions that parameterize the 3D motion 

ncoder and the surrogate encoder, respectively. The surrogate en- 

oder learns to regress the desired latent encoding z, learned dur- 

ng the autoencoder training, by using the surrogate images pro- 

ided during treatment. The architecture of the 2D encoder is com- 

osed of five 2D convolutional layers, all using strided downsam- 

ling layers to reduce the dimension of I t while gradually increas- 

ng the number of channels. Finally, ̃  z is obtained at the output of 

wo fully connected layers. Once the common latent representa- 

ion is established, the surrogate encoder can replace the 3D mo- 

ion encoder during inference. In this manner, the full deformation 

eld φt can be recovered using only the single 2D image I t as in- 

ut. 

Spatial transformer network The STN module was originally 

roposed by Jaderberg et al. (2015) to increase the robustness of 

mage registration using convolutional neural networks with re- 

pect to spatial variations in their inputs. Since then, it has been 

sed to provide models with the ability to perform spatial warp- 

ng operations on images and volumes ( Balakrishnan et al., 2019; 

omaguera et al., 2020 ). It is comprised entirely of differentiable 

perations, which is an important property when used in end-to- 

nd trained models. In this work, the STN is used to warp V 
rigid 

t 

ith the predicted deformation fields φt to obtain the predicted 

olume ˜ V t , thereby enabling computing the similarity to the true 

 t . By using the STN, the motion autoencoder is optimized to pre- 

ict deformation fields instead of attempting to directly regress the 

oxel intensities of V t . 

.2.3. Training procedure and inference 

Training The proposed deformable motion model is trained in 3 

teps. First, the autoencoder is trained independently, using the 3D 
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otion fields φt ∈ � generated from the registration of V 
rigid 

t and 

 t by the deformable registration network. Second, the weights of 

he autoencoder are fixed while the surrogate encoder is trained to 

eplicate the latent representation of the autoencoder. Finally, all 

he weights are freed and the entire network is trained together as 

 final fine-tuning step. During the first step the network is opti- 

ized using the first 2 terms of the following loss function: 

 = L sim 

( ̃  V t , V t ) + βL grad ( ̃
 φt ) + || z, ˜ z || 2 2 (3)

here the first term ( L sim 

) represents the similarity between the 

redicted volume ˜ V t and the true current volume V t . The second 

erm ( L grad ), weighted by the parameter β , is a gradient penalty 

or ˜ φt which encourages the generation of smooth and diffeomor- 

hic deformation fields ( Balakrishnan et al., 2019 ). During the sec- 

nd step, the final loss term in Eq. (3) is used. It represents the L 2 
orm between the autoencoder’s latent vector z and the surrogate 

ncoder vector ̃  z . Finally, in the last step all the terms of Eq. (3) are

sed to fine-tune all of the network components. 

Inference Once trained, the deformable motion model is used 

ithout the motion encoder, as shown in Fig. 2 b. The inputs during 

nference are I t and V 
rigid 

t , which are used to estimate φre f . I t is

sed to obtain ̃

 z , which is passed to the 3D motion decoder. V 
rigid 

t 

s also used at the last step when it is deformed by the STN to

btain the network’s output ̃  V t . 

.3. Implementation details 

The proposed model was implemented using PyTorch 1.7.0 

 Paszke et al., 2019 ). The motion encoder is implemented with a 

-layer fully convolutional network. The first three layers include 

trided downsampling operations with a rate of 2. The number of 

hannels was progressively changed over each layer in the follow- 

ng order [64 , 128 , 256 , 128 , 64 , 24] . The kernel size for all 3D con-

olutions was 3 × 3 × 3 and the stride and padding were adjusted 

epending on whether the layer was used for downsampling or 

ot. Each convolutional layer was followed by batch normaliza- 

ion and a ReLU activation layer. The motion decoder is the mir- 

or image of the motion encoder except that all convolutions were 

eplaced by transposed convolutions. Moreover, Leaky ReLU acti- 

ations with a slope of 0.2 were used for the decoder. The aux- 

liary encoder has the same architecture as the motion encoder. 

he surrogate encoder is a fully convolutional network as well. 

t is comprised of five 2D convolutional layers, four of which use 

trided downsampling operations. The convolution parameters are 

he same as for the motion encoder except for the number of chan- 

els that was set to [64 , 128 , 256 , 256 , 384] to match the dimen-

ion of the latent vector. The convolutional layers are followed by 

wo fully-connected layers to regress ̃  z . 

The Adam optimizer ( Kingma and Ba, 2014 ) was used with an 

nitial learning rate of 10 −4 which was halved when the valida- 

ion loss stopped decreasing for 15 epochs. The stopping criteria 

or step 1 was met when L sim 

( ̃  V t , V t ) did not improve by 0.01 for

0 epochs. The weighting term β in Eq. (3) was set to 0.01. Train- 

ng in step 2 was stopped when L 2 ( ̃  z , z) did not improve by more

han 0.01 for 10 epochs. Finally, the stopping criteria for the final 

raining step was the same as step 1 but the threshold was de- 

reased to 10 −3 to allow for fine-tuning. 

For the similarity loss L sim 

, the MSE loss was slightly adapted 

or the use with US images. Since US acquisitions appear as a con- 

cal shape on a black background, there is a large portion of the 

oxels that contain no information. A mask representing only non- 

mpty voxels was applied to ignore those regions when registering 

wo volumes or computing image similarity. 

A leave-one-out validation scheme was employed to evaluate 

he network’s performance on each unseen subject. Since the de- 
6 
ormable registration network is used during inference to gener- 

te φre f , it was also trained using the leave-one-out scheme to en- 

ure no data leakage between the model components. Finally, the 

xhale-inhale transformation used in the proposed rigid alignment 

odule was computed with the widely used medical image regis- 

ration library Elastix ( Klein et al., 2010 ). 

Overall, the reference volume goes through 2 transformations 

uring the execution of the proposed framework. The first trans- 

ormation (rigid) is done using the warping function from the Sim- 

leElastix package for Python ( Marstal et al., 2016 ). The second 

arping operation (deformable) is done at the end of the frame- 

ork. It is performed using the STN module as it allows for end- 

o-end training. As only two warping steps are performed within 

ur framework, no warping artefacts were observed in the result- 

ng volumes. 

. Experiments and results 

In this section, we present the experimental setup used to eval- 

ate the motion modelling framework, with comparisons to state- 

f-the-art methods. We first present the 3D+t US dataset that was 

sed to train and test the framework. A first set of experiments 

s presented to analyze the individual contribution of each com- 

onent to the framework’s overall performance. This is achieved 

hrough an ablation study and experiments focusing on individual 

omponents such as the rigid alignment module, auxiliary encoder 

nd surrogate encoder. Finally, a second set of experiments is con- 

ucted to compare our method to other related approaches based 

n image similarity and target tracking metrics. Results were deter- 

ined to be statistically different using the Wilcoxon signed rank 

est with significance level α = 1% . Effect size was measured using 

earson correlation ( ρ). Bolded results in tables indicate the best 

erforming model or model configuration for each performance 

etric. Multiple bolded results for the same metric indicate that 

here is no significant statistical difference between the results. 

.1. 3D+t US dataset 

A dataset of free-breathing 3D+t US sequences was acquired 

rom 20 healthy volunteers, who provided their written consent. 

he acquisitions were performed using a Philips EPIQ 7G ultra- 

ound system with a X6-1 matrix array transducer. During acqui- 

ition, the ultrasound probe was placed under the sternum along 

he sagittal plane, capturing a cross section of the left liver lobe. 

he imaging depth was set to 12cm. Focus and contrast were ad- 

usted to provide the best visualization of the liver and its ves- 

els. Using a 15 s acquisition window, up to 3 respiratory cycles 

ere captured with a 250ms temporal resolution, producing se- 

uences of around 60 volumes per volunteer. This yielded the total 

mount of 1200 volumes in the dataset. The initial average vol- 

me size and spatial resolution were 302 × 228 × 130 voxels 

nd 0.58 × 0.52 × 0.91 mm 

3 respectively. The acquired volumes 

ere first pre-processed by applying a Bayesian non-local means 

lter ( Coupe et al., 2009 ) for speckle removal. Then, the volumes 

ere resampled to a 2 . 0 × 2 . 0 mm 

2 spatial resolution in the sagit-

al plane and a slice thickness of 1.0 mm. Finally the volumes were 

ropped to a size of 64 × 64 × 32 (rows × columns × slices). To 

btain a sequence of input surrogate images, the central slices of 

ll the volumes composing a given 3D+t sequence were extracted 

long the desired anatomical plane (sagittal or axial). For each se- 

uence, between 4 and 5 anatomical landmarks were manually an- 

otated by an expert on each temporal volume through one res- 

iratory cycle. As no cancerous tumours were present in the cur- 

ent dataset, the tracked anatomical landmarks were vessels and 

iver boundaries (see Fig. 4 ). The estimated inter-rater tracking er- 
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Fig. 4. Examples of expert-annotated landmarks placed on sagittal images from the 

3D+t US dataset used for evaluation. 

Table 1 

Resulting image similarity metrics for different model configurations 

leading to the proposed model. Values are mean ± std. 

Model MSE NCC SSIM 

Baseline 0.15 ± 0.04 0.42 ± 0.05 0.29 ± 0.05 

Baseline + STN 0.10 ± 0.06 0.57 ± 0.10 0.54 ± 0.11 

Baseline + STN + φre f 0.07 ± 0.04 0.62 ± 0.10 0.60 ± 0.10 

Rigid only 0.10 ± 0.06 0.61 ± 0.11 0.60 ± 0.12 

Proposed (axi.) 0.07 ± 0.04 0.63 ± 0.10 0.61 ± 0.10 

Proposed (sag.) 0.06 ±0.03 0.66 ±0.09 0.65 ±0.08 
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Table 2 

Displacement (in mm) applied by the rigid alignment module in different res- 

piratory phases with respect to the distance of the chosen inhale volume to 

the true inhale position. Values are mean ± std. 

V inh selection error Exhale Mid-cycle Inhale Overall 

0.0 2.9 ± 0.9 7.0 ± 2.4 12.0 ± 1.3 7.2 ± 3.8 

1.5 ± 0.2 2.8 ± 0.9 6.7 ± 2.3 10.5 ± 0.9 6.7 ± 3.3 

3.4 ± 0.4 2.5 ± 0.8 6.1 ± 2.0 8.3 ± 0.7 5.8 ± 2.6 

5.2 ± 0.7 2.3 ± 0.8 5.3 ± 1.5 6.4 ± 0.4 4.9 ± 2.0 

7.4 ± 0.9 2.1 ± 0.7 4.5 ± 1.1 4.6 ± 0.2 4.0 ± 1.5 
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or variability for manual annotations on 3D US sequences is 1.2- 

.8 mm on average ( Luca et al., 2015 ). 

.2. Proposed framework analysis 

Ablation study In order to better understand the role and 

ontribution of each component of our framework, an ablation 

tudy was performed. Different configurations of the proposed de- 

ormable model were compared based on the image similarity be- 

ween ground-truth and predicted volumes. Eq. (4) shows how 

he similarity between the generated ( ̃  V t ) and true ( V t ) volumes is

omputed. 

imilarity ( ̃  V t , V t ) = 

1 

t 

t ∑ 

0 

L ( ̃  V t ◦ M t , V t ◦ M t ) (4) 

here M t is the current US mask described in Section 2.3 , L is the

est similarity metric and ◦ is the Hadamard product. To leverage 

ifferent ways to evaluate image similarity we used MSE, normal- 

zed cross-correlation (NCC) and structural similarity (SSIM) as the 

est similarity metrics ( L ). 

The baseline version of the model includes an autoencoder and 

he surrogate encoder without the rigid alignment module. This 

eans that the model attempts to learn how to directly gener- 

te volumes by regressing the voxel intensities instead of defor- 

ations. To generate deformation fields instead of voxel intensi- 

ies, the deformable registration network and the STN are added 

o the baseline. Next, the auxiliary encoder is introduced to as- 

ist the model during the decoding stage. Following that, the rigid 

lignment module from Section 2.2.1 is included upstream to the 

odel, thereby completing all the model components. The pro- 

osed model was evaluated when using sagittal and axial orien- 

ations for the surrogate image. 

Table 1 shows the results of the ablation study, evaluating each 

onfiguration based on the similarity metrics. It can be seen that 

he successive addition of each component allows to improve the 

utput volumes across all similarity metrics. The large improve- 

ent from Baseline to Baseline + STN shows that the deformable 

otion model performs better when it is optimized to generate 

eformation fields instead of voxel intensities. The addition of the 

kip connections (extracted from φre f ) further improves the out- 
7 
ut’s quality by providing patient-specific information to the de- 

oder. Finally, the addition of the rigidly aligned input gives an 

dditional improvement to the appearance of the output volumes 

y reducing the amount of motion that needs to be represented 

y the autoencoder. This shifts the focus of the deformable mo- 

ion model on more localized motion patterns. Results also show 

hat the model performs better when the sagittal view images are 

sed as surrogate ( α < 0 . 01 , ρ > 0 . 9 ). Presumably, this is because

he sagittal view covers a larger liver area than the axial view for 

equences acquired under the sternum. 

Rigid alignment module Our next experiment aimed at vali- 

ating the robustness of the rigid alignment mechanism when the 

hosen pre-treatment volumes do not represent the full range of 

otion of the liver during intervention, measuring the robustness 

owards variation between baseline and online acquisitions. 

Generally, V exh can be chosen reliably since the exhale position 

s easily reproducible. On the other hand, ensuring that V inh rep- 

esents the deepest breathing amplitude for the entire sequence is 

ot trivial. 

In this experiment, we replaced the true V inh by volumes that 

re adjacent to it in the temporal sequence. We quantified their 

istance (in mm) to the actual inhale position through rigid regis- 

ration. Each inhale volume was used by the rigid alignment mod- 

le to generate a set of rigid transformations covering one respira- 

ory cycle for each case of the data set. Using the same approach as 

efore, the displacement applied by the rigid transformations was 

omputed. The resulting displacement values were then split into 3 

espiratory phase groups (exhale, mid-cycle and inhale), each rep- 

esenting 1/3 of the respiratory cycle. 

Table 2 shows the displacement introduced by the rigid align- 

ent module at each phase as a function of the average V inh selec- 

ion error. It can be observed that the overall effect of increasing 

he selection error induces a decrease in the generated rigid mo- 

ion amplitude. This effect is most prominent in the phases clos- 

st to inhale where the decrease in displacement is almost equal 

o the shift from the true inhale position. In contrast, volumes at 

xhale and mid-cycle phases are less affected by the selection er- 

or. In summary, the error in the choice of either V exh or V inh has

 direct effect on the maximum displacement yielded by the rigid 

odule. 

Auxiliary encoder During the motion generation stage, the mo- 

ion decoder gets information from two sources; the latent vector 

and the skip connections from the auxiliary encoder. In order to 

etter understand how the model uses both sources of informa- 

ion, the number of skip connections varied from 1 to 5, starting 

rom the highest resolution layer and going towards the bottle- 

eck of the autoencoder. In essence, allowing for more skip con- 

ections means that the model has more information or features 

rom φre f . This can ultimately lead to ignoring completely the in- 

ormation contained in z. To detect when this occurs, the model’s 

utoencoder was tested both with a learned z vector and with 

 randomly generated vector z rand of the same size as z. Hence, 

or each configuration, we evaluate whether the information from 

he latent vector contributes to the model’s performance. Figure 5 
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Fig. 5. Motion autoencoder performance with learned and random latent vectors 

when varying the number of skip connections sent from the auxiliary encoder. The 

dotted horizontal line indicates the similarity of the volume obtained by directly 

applying φre f to V rigid 
t without going through the autoencoder. 
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Fig. 6. MSE value distributions between ground-truth and predicted sub-volumes 

along the medio-lateral axis. The predictions were obtained through either rigid 

alignment only, deformation with a DVF generated from a random latent vector, 

deformation using φre f or the proposed model. Mean values are indicated by the 

green triangles. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 7. Image similarity for the entire data set when shifting the position of the sur- 

rogate image I t through translation along the medio-lateral axis or rotation around 

the sagittal axis. 
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resents MSE values between ground-truth and predicted volumes 

or each model configuration. The dotted horizontal line indicates 

he similarity of the volume obtained by directly applying φre f to 

 

rigid 
t without going through the autoencoder. It is noticeable that 

or models using 2 or more skip connections, the output’s similar- 

ty when generated using either z rand or z is practically the same. 

ndeed, all pairs of results for models with more than one skip 

onnection are statistically the same. This allows us to identify the 

onfiguration with one skip connection, at the layer of highest res- 

lution, as the optimal way to introduce patient-specific informa- 

ion from φre f . If more than one skip connection is used, the model 

ends to ignore the information contained in z and only focuses on 

he features carried by the skip connections. In that scenario, the 

odel does not take into account any information about the cur- 

ent state of the organ given by I t . 

To further analyze the contribution of the single skip connec- 

ion and vector z, the image similarity is evaluated at different por- 

ions of the output volume. The volumes were split into 5 sub- 

olumes along the medio-lateral axis. The similarity was evalu- 

ted in 4 scenarios: after rigid alignment only ( V 
rigid 

t ), after warp- 

ng with φre f only, after warping with a DVF obtained using z rand 

nd after warping with the DVF obtained using the true z vec- 

or. Figure 6 shows the MSE between ground-truth and predicted 

ub-volumes across the different positions. The rigid input volumes 

 

rigid 
t show a stable mean similarity across all positions within the 

omplete volume. For volumes warped with φre f , the similarity is 

etter at the center of the volume (i.e near the surrogate image 

osition) and becomes increasingly worse as the sub-volume gets 

urther from the center. This is expected as φre f is generated by 

egistering a volume where I t is replicated across all slices. Con- 

equently, the most accurate registration is obtained at the cen- 

er, which is the correct position for I t . As we move further away

rom the center, the less accurate the registration becomes. As for 

olumes warped with a DVF obtained using z rand , a similar con- 

lusion can be made from the skip connections experiment. When 

ne skip connection is used, the model performs worse when pro- 

ided with random information from the bottleneck. Overall, the 

est performance was shown by the proposed model that uses the 

rue latent vector z, especially at the edges of the volumes. 

Surrogate encoder There is a possibility that the US probe is 

ot positioned at the same location on the patient’s body at ev- 

ry fraction of the radiotherapy treatment. Therefore, it is neces- 

ary to evaluate the robustness of the model to potential shifts in 

he position of the 2D surrogate image. To do so, the deformable 
8 
otion model portion of the framework was first trained to per- 

orm predictions based on input 2D images taken from the cen- 

er of the ground-truth volumes. Then, during inference, the sur- 

ogate slice location was changed by either translating it along the 

edio-lateral axis or by rotating it around the sagittal axis. The 

ranslation shift was varied from -15 mm to 15 mm with respect 

o the central slice, covering the entire volume. The rotation shift 

as varied from -25 to 25 degrees. Figure 7 shows the NCC be- 

ween ground-truth and generated volumes across the entire data 

et when applying both types of surrogate shift independently. It 

an be observed that, as the translation or rotation shift of the sur- 

ogate image increases, the image similarity decreases reaching its 

inimum at the maximum deviation from the central sagittal slice. 

he mean difference in NCC does not exceed 0.01 when the shift 

emains between -4 and 4 mm for translation and -10 to 10 de- 

rees for rotation. Therefore, the model can be considered capable 

f coping with slight changes in the position and orientation of the 

urrogate image. 

Nevertheless, it is possible to improve the model’s tolerance to 

urrogate shifts and reduce the deterioration of the generated vol- 

mes due to deviations from the central sagittal plane. By purpose- 

ully providing shifted 2D images to the surrogate encoder during 

raining, it is possible to learn a latent encoding that is less de- 
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Fig. 8. Evaluation of the robustness to translation shifts in the surrogate image po- 

sition for the proposed model trained using no DA or DA with shifts of up to 3 mm. 
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Table 3 

Image similarity metrics between ground-truth and predicted volumes for differ- 

ent comparative methods. Values are mean ± std. 

Model MSE NCC SSIM 

Unregistered 0.09 ± 0.06 0.59 ± 0.11 0.55 ± 0.13 

Rigid only 0.10 ± 0.06 0.61 ± 0.11 0.60 ± 0.12 

ME ( Paganelli et al., 2018 ) 0.21 ± 0.08 0.59 ± 0.08 0.53 ± 0.10 

FC ( Mezheritsky et al., 2020 ) 0.09 ± 0.04 0.57 ± 0.09 0.54 ± 0.10 

FC + Rigid 0.08 ± 0.05 0.63 ± 0.10 0.63 ±0.10 

Proposed 0.06 ±0.03 0.66 ±0.09 0.65 ±0.08 
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endent on the position and orientation of the surrogate image I t . 

his approach can also be used as a data augmentation (DA) ap- 

roach to improve model generalization. To evaluate the effect of 

his training strategy, we re-trained the proposed model by pro- 

iding surrogate slices with a translation shift of up to 3 mm in 

ach direction along the medio-lateral axis with respect to the cen- 

ral sagittal slice. We excluded rotation shifts and larger transla- 

ion shifts from this experiment to maintain reasonable training 

imes. Figure 8 shows the performance of the proposed model in 

ts original training setup as well as with the DA strategy. We ob- 

erve that using the DA strategy helps to improve the proposed 

odel’s robustness to shifts in the position of the surrogate im- 

ge. The largest improvement occurs at more extreme shifts while 

mall shifts do not benefit from this strategy as much. 

Real-time application compatibility Finally, to assess the com- 

atibility with real-time applications, the inference time of the 

roposed framework was evaluated. The total time to process the 

igid and deformable steps of the framework was 0.47 ± 0.04 s 

hen executed on CPU and 0.09 ± 0.01 s when executed on a 

VIDIA Titan X GPU with 12 GB of RAM. This shows that the re-

uired time to generate motion predictions is sufficiently short to 

e included within a real-time radiotherapy workflow. 

.3. Comparative results 

The next set of experiments compared the performance of 

he proposed framework to related approaches for 3D mo- 

ion modelling and target tracking in US. Namely, we com- 

are the proposed approach to two other methods described by 

aganelli et al. (2018) and Mezheritsky et al. (2020) in the con- 

ext of image-guided radiation treatments. In the former case, two 

rthogonal 2D slices extracted from the reference volume ( V re f ) 

re registered to the corresponding orthogonal 2D slices in the 

n-room volume ( V t ). Subsequently, the partial 2D motion fields 

re combined to extrapolate the entire 3D motion. We will refer 

o this approach as motion extrapolation (ME). As for the model 

rom Mezheritsky et al. (2020) , the approach consists of predict- 

ng φt by combining 3D features from V re f and 2D features from 

 t . The model is comprised of a 2D encoder for I t , a 3D encoder

or V re f and a 3D decoder coupled with a STN to generate φt and 

pply it to V re f . We will refer to this approach as feature combi-

ation (FC). All three approaches (ME, FC and the proposed frame- 

ork) aim to generate the motion field corresponding to the res- 

iratory state indicated by the surrogate 2D information. We first 

ompare their performances based on the similarity metrics used 

n Section 3.2 . We also compute the global and local target reg- 
9 
stration error (TRE) using 3D deformable image registration (DIR) 

etween ground-truth and predicted volumes, and manual land- 

ark annotations, respectively. 

Image similarity Table 3 shows the similarity metrics for the 

ifferent com pared methodologies. As a reference, in the first row 

f the table, we report the result when there is no motion com- 

ensation (Unregistered). The second row represents the values 

easured when only the rigid alignment is applied on the ref- 

rence volume. Overall the proposed approach showed the best 

erformance for all metrics except for SSIM where it was statis- 

ically equivalent to FC with rigid alignment ( α = 0 . 4 , ρ = 0 . 38 ).

lthough the rigid alignment was designed to be used in the pro- 

osed model, it was able to significantly improve the results for 

he FC model ( α < 0 . 01 , ρ > 0 . 9 ), showing its usability as an inde-

endent rigid alignment module. The worst similarity results were 

btained by ME, which was designed for local modelling. In con- 

equence, there is a poor overall similarity between ground-truth 

nd predicted volumes. 

Target tracking Table 4 compares the methods based on local 

RE for different respiratory phases and for the entire respiratory 

ycle overall. The results were obtained by manually tracking each 

f the identified landmarks and averaging the difference between 

he ground-truth and predicted landmark positions. Eq. (5) shows 

ow the TRE is computed from pairs of predicted ( p 
pred 
n ) and true 

 p true 
n ) 3D landmark annotations using the Euclidean distance d. 

 RE = 

1 

n 

n ∑ 

0 

d (p pred 
n , p true 

n ) (5) 

The results obtained on the reference volume were excluded 

henever it was part of the analyzed respiratory cycle. It can 

e observed that all models were able to improve over the un- 

egistered volumes for all respiratory phases. Moreover, the er- 

ors are larger for phases that are temporally further away from 

he reference respiratory phase. The largest improvement in TRE 

ame from the rigid alignment of the volumes. This is expected 

s this step aims to represent the general motion of the organ, 

hich includes the largest displacement. Further improvements in 

he predicted landmark positions result from the proposed de- 

ormable modelling. Three models (ME, FC + rigid and proposed) 

erformed similarly at exhale, however as phases get closer to the 

nhale phase, the proposed approach shows significantly lower er- 

ors achieving the best local TRE result overall. In addition, for the 

nhale phase, the proposed model’s highest average tracking error 

f 1.8 ± 1.5 mm occurs in the SI direction. The average tracking 

rrors in the AP and lateral directions are 1.0 ± 0.9 mm and 0.5 ±
.6 mm respectively. Since most of the liver’s motion occurs in the 

I direction, it is expected that the error is the highest in that ori- 

ntation. Nonetheless, these results show that the proposed model 

llows to reduce the uncertainty of the target position in the SI 

irection to a similar order of magnitude as the other directions. 

To better visualize the tracking performance of each method, 

ig. 9 shows how the tracking error as well as the vessel trajectory 

n the SI direction evolve over time for each model during 3 respi- 
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Table 4 

3D tracking performance (in mm) of the compared approaches based on local TRE at different phases. Values are 

mean ± std. ( μ ± σ ) and 95th percentile (P95). 

Model 

Exhale Mid-cycle Inhale 

Overall 
μ ± σ P 95 μ ± σ P 95 μ ± σ P 95 

Unregistered — — 9.8 ± 8.2 20.2 18.0 ± 13.4 31.4 10.7 ± 9.7 

Rigid only 3.5 ± 1.3 7.6 3.9 ± 1.7 6.9 6.3 ± 4.3 12.6 4.6 ± 3.2 

ME ( Paganelli et al., 2018 ) 2.7 ± 1.4 6.1 5.9 ± 2.8 13.3 10.9 ± 7.9 23.5 6.5 ± 6.4 

FC ( Mezheritsky et al., 2020 ) 5.0 ± 3.3 9.7 7.9 ± 4.3 15.4 13.8 ± 10.7 27.5 8.9 ± 7.5 

FC + Rigid 3.1 ± 0.5 6.8 4.5 ± 2.2 6.5 7.2 ± 4.4 10.8 4.9 ± 3.9 

Proposed 2.8 ± 1.6 5.6 3.2 ± 0.8 5.1 4.5 ± 2.5 9.5 3.5 ± 2.4 

Fig. 9. (a) Evolution of TRE through time and (b) target trajectories in the SI direction for 3 cases. Landmarks were tracked for all 3 acquired breathing cycles. 
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Fig. 10. Average local tracking error (mm) of the proposed model for all cases and 

all landmarks with respect to the distance between the tracked landmark and the 

central plane. 
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atory cycles for 3 subjects within the 3D+t US data set. As previ- 

usly observed in Table 4 , the largest tracking errors occur at the 

nhale respiratory phase. Figure 9 a shows that the proposed frame- 

ork is able to maintain the lowest error throughout all respira- 

ory cycles compared to other models. The plots in Fig. 9 b show 

hat the proposed model is able to follow the ground-truth trajec- 

ory better than the comparative approaches. 

Furthermore, the proposed model’s average tracking error for 

ll cases with respect to the landmark’s distance to the central 

lane of the volume is shown in Fig. 10 . It is possible to observe

hat all values hover around the reported average tracking error for 

he proposed model regardless of the distance to the central plane. 

ased on these results, we conclude that it is not the position of 

he landmark that affects the model’s tracking performance, but 

ather the respiratory phase in which the liver is found. 

In addition to local TRE, the global displacement error of the 

roposed framework was evaluated by applying 3D DIR between 

he ground-truth and generated volumes. By converting the ob- 

ained displacement fields to displacement magnitudes and then 

veraging over the entire volume, we obtain the average estimation 

rror over all voxels in the generated volume. Eq. (6) shows how 

he global estimation error is computed by averaging the magni- 

udes of the displacement field computed between the predicted 

nd ground-truth volumes φ( ̃  V t , V t ) using the deformable registra- 

ion network. 

lobal estimation error = 

1 

t 

t ∑ 

0 

|| φ( ̃  V t , V t ) || 2 2 (6) 
10 
The same procedure was applied to the unregistered volumes, 

owever the displacement from the rigid transformation calculated 

y the rigid module was also taken into account. Figure 11 shows 

he calculated global estimation error distribution for each case in 

he US dataset. By observing the different value distributions of the 

nregistered volumes, it is noticeable that the data set presents 

 wide variety of motion amplitudes. For all cases, the proposed 
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Fig. 11. Global estimation errors calculated by 3D DIR for reference volumes with- 

out motion compensation (Unregistered) and volumes generated by the proposed 

model (Proposed) with respect to the ground-truth volumes. The obtained defor- 

mation fields were converted to motion amplitudes (in mm). 
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odel is able to reduce the global estimation error. The mean 

lobal error was reduced from 8.7 mm (Unregistered) to 1.7 mm 

ith the proposed solution. 

Deformation quality When generating motion from volumetric 

mages, deformation fields are expected to be diffeomorphic to en- 

ure physically plausible displacements. We evaluated the smooth- 

ess of the deformation fields produced by our deformable motion 

odel by calculating the Jacobian matrix determinant over the en- 

ire motion field ( | J( ̃  φt ) | ). The average | J( ̃  φt ) | for the entire dataset

as 0 . 97 ± 0 . 43 with only 1 . 1% of negative values, indicating that

he model produces smooth and plausible deformations with very 

ew foldings. 

Qualitative results Fig. 12 illustrates the generated and ground- 

ruth volumes at three respiratory positions (mid-inhale, inhale 

nd mid-exhale) along two imaging planes (sagittal and axial) for 

ne example case. Difference maps with respect to the ground- 

ruth at the inhale phase are presented as well. A general observa- 

ion is that the proposed framework is able to infer motion outside 

f the surrogate plane since motion is visible in both perpendicular 

lanes. Furthermore, the difference maps in both planes showcase 

hat the proposed approach generates the lowest voxel intensity 

rrors at inhale. Also, the proposed framework reproduces small 

eatures like vessels and liver borders better than the ME and FC 

pproaches as highlighted by the red circles. It is also noticeable 

hat the application of the deformable motion component over the 

utput of the rigid alignment module improves local correspon- 

ences with the ground truth volume, highlighting the importance 

f the second step of the proposed framework. 

Finally, Fig. 13 presents generated and ground truth slices at 5 

ifferent phases between exhale and inhale. To display the true 

nd generated deformation fields, green and yellow arrows were 

verlaid on the generated volume slices. Small sections of the de- 

ormation fields were increased in size for better visualisation. At 

he reference phase, the generated deformation field is essentially 

ull. As the phases get closer to inhale, the amplitude of motion 

pplied to the reference volume is gradually increased. It is no- 

iceable that for the majority of positions, the generated motion 

eld follows the expected motion field well. In general the motion 

s oriented in the inferior direction as expected during inhalation. 

ore localized motion patterns, representing the deformable com- 

onents of motion, are also present. They can be seen at the left 

f the images where the heart is visible, as well as in the bottom 

ection of the images. Additional qualitative results can be found 

n the supplementary materials. 
11 
. Discussion 

This work presented a novel 3D motion modelling framework 

hat includes advantages from both population-based and patient- 

pecific models for US-guided radiotherapy procedures. The pro- 

osed framework enables target tracking by generating 3D mo- 

ion fields, which allow to track multiple landmarks simultane- 

usly and in a continuous manner given a reference location for 

ach landmark. In addition, being based on a deep learning model 

llows reducing the amount of manual preparation and data ma- 

ipulation required to construct the motion model while also al- 

owing for real-time inference capabilities. The proposed model has 

emonstrated promising results for image similarity metrics and 

arget tracking when compared to both traditional and deep learn- 

ng based approaches. 

The ablation study has revealed that the inclusion of features 

hrough skip connections was the component with greater con- 

ribution to the deformable motion modelling component of the 

ramework. By skipping relevant features to the decoder, the model 

everages patient-specific information as it attempts to generate a 

eformation field for an anatomy it has not seen during training. 

 limitation that is often attributed to population-based models 

s that by fitting them to a large amount of anatomies, they ul- 

imately learn to represent an average motion field without be- 

ng able to properly model the motion of each individual subject 

 McClelland et al., 2013 ). However, our model is able to avoid this 

y leveraging the patient-specific features it receives during the 

otion field generation. Furthermore, the experiments showed the 

mportance of controlling the amount of patient-specific informa- 

ion that is provided to the model. If too many features from φre f 

re skipped through, the latent representation of the model col- 

apses and no longer captures meaningful information about the 

urrent state of the organ. In this case, the model would merely 

earn to refine φre f . Therefore, the combination of both skip con- 

ections with the latent vector z must be optimized to use both 

ources of information. 

When comparing our framework to statistical global model so- 

utions such as in Preiswerk et al. (2014) , our framework presents 

mprovements over the motion model construction step. Indeed, 

hen constructing a population model based on PCA, an inevitable 

tep is the establishment of inter-subject correspondences. Usu- 

lly, this process is done manually or semi-automatically which 

dds a significant amount of time to the data preparation and 

odel construction. In addition, this limits the type of data that 

he model can operate on. If the training data doesn’t include the 

nter-subject correspondences established during the model con- 

truction, the model’s performance will decrease. By employing a 

eep learning framework for the population based motion model 

onstruction, we allow the network to learn those inter-subject 

orrespondences implicitly. It is assumed however that during in- 

erence, the provided inputs show the same field-of-view as the 

nes used during training. However, fine-tuning the model to a 

ew anatomy remains simpler when using a deep network in- 

tead of a global statistical model. A final advantage our approach 

resents over Preiswerk et al. (2014) is the fact that the model an- 

lyzes the entire surrogate image as it comes from the acquisition 

ystem. This means true 2D surrogate signals are used instead of 

racking a fiducial marker within the surrogate images to drive the 

otion model. 

During treatment planning, radio-oncologists add a margin of 

t least 5 mm around the region to be treated to account for res- 

iratory motion. This is done even in the presence of breath hold 

echniques ( Brock, 2011 ). Since our model achieved an average TRE 

f 3.5 mm it could allow to reduce the extent of the added mar- 

ins, thereby sparing healthy tissues from an unnecessary radiation 

ose. Although the main focus of this paper is the tracking capa- 
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Fig. 12. Qualitative results for all compared methods. For both sagittal and axial planes, the central slice of the volume is shown at mid-inhale, inhale and mid-exhale 

respiratory phases. For the inhale phase, an error map is calculated and shown. Red circles are included to highlight differences between the displayed approaches. 

Fig. 13. Qualitative results from exhale to inhale phases with overlaid ground-truth (green) and predicted (yellow) displacement fields. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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ilities of our network, its use is not limited to 3D target tracking. 

s shown by the image similarity and global TRE experiments, our 

odel can also estimate the global and deformable motions of the 

rgan along all the slices in the volume. This information can be 

seful for radiotherapy applications, in particular for dose delivery 

stimation. In addition, by requiring a surrogate image in only one 

maging plane, the surrogate acquisition time is reduced without 

acrificing the capability of the model to predict the motion out- 

ide of that plane. 

The local TRE experiment has shown the flexibility of the pro- 

osed rigid alignment module as it has improved the performance 

f 2 different deep learning-based models by providing them with 

igidly aligned input volumes. However, this approach is not ex- 

mpt of limitations. As explained in Section 2.2.1 , it is assumed 

hat the state of the liver is bound between the exhale and inhale 

ositions acquired before treatment. In the event where the liver 

xceeds those bounds, σ no longer describes the position of the 

iver relative to the pair of pre-treatment volumes, thereby pro- 

iding less accurate alignment between the central slice of the 
12 
eference volume and the surrogate image. The first experiment 

f Section 3.2 has demonstrated that an error in one of the pre- 

reatment volumes will only affect the accurate alignment of vol- 

mes close to the faulty pre-treatment volume. In theory, the de- 

ormable motion model could compensate for the lack of displace- 

ent of the rigid alignment module in this type of scenario. How- 

ver, the deformable motion model needs to be trained on volumes 

hat do not present an ideal rigid alignment to provide a suffi- 

ient rigid motion compensation. To ensure that the pair of pre- 

reatment volumes accurately present the full range of motion of 

he liver, it is recommended that the pre-treatment volumes are 

cquired before each treatment. This also reduces the negative ef- 

ects of anatomical changes that occur during the course of the 

reatment on the rigid alignment module. 

Although the proposed rigid alignment module could have been 

mplemented using a deep learning approach, we found that im- 

lementing it as an image similarity based module was more ad- 

antageous. As rigid alignment only involves the choice of 6 pa- 

ameters for translation and rotation in 3D, it seemed unnecessary 
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o increase the complexity of the motion model architecture and 

raining procedure to achieve coarse rigid alignment with an addi- 

ional deep model. By using the image-similarity based approach, 

e achieve a sufficient level of performance for the requirements 

f the deformable model, with very few pre-treatment steps and a 

ery short execution time during treatment. 

When developing our proposed framework, we envisioned the 

ollowing clinical protocol. On the day of treatment, the patient 

s positioned in the treatment room the same way as during 

he planning acquisitions, with the US probe in place. Once pa- 

ient setup is complete, the medical staff acquires the two pre- 

reatment volumes (exhale and inhale) and begin acquiring the 2D 

urrogate signal. At this time, the motion modelling framework 

an be initialized and used to communicate with the treatment 

nit. As the probe cannot be manipulated by medical staff dur- 

ng the treatment, it will need to be held by a dedicated probe- 

olding device. For instance, it can be a robotic arm such as in 

chlüter et al. (2019) or a 3D printed in-house tool. The choice of 

he probe-holding device will depend on the position at which the 

robe will need to be held. 

An important feature that motion models need to have is the 

bility to predict and anticipate the motion the target will expe- 

ience in real time. This is necessary because the adjustment of 

he treatment plan and delivery to a new position of the target 

sn’t instantaneous and bears a latency that cannot be ruled out 

 Keall et al., 2006 ). Several works on motion modelling have pre- 

ented ways to include motion prediction within their framework 

 Preiswerk et al., 2014; Harris et al., 2016; Romaguera et al., 2020 ).

hile in this work the model doesn’t present motion prediction 

apabilities, the framework is capable of including a temporal pre- 

iction module. Specifically, the surrogate branch of the motion 

odel can learn to predict the future latent representation of the 

rgan, thus generating the future anticipated motion field. While 

his addition is crucial for the applicability in a clinical setting, it 

s out of the scope of this work and needs to be validated in future

tudies. 

Another limitation common to several motion models which 

inders the transfer of those approaches to the treatment room, 

s the amount of subjects used for validation. In this work, the 

ata acquired from the 20 subjects presented a good variability 

n anatomical appearance. However, the acquisition time for each 

equence (15 s) has limited the amount of breathing variability 

hat was captured. Also, long-term effects such as exhale drift 

 von Siebenthal et al., 2007 ) could not be taken into account either.

ince the 3D+t dataset was acquired on healthy subjects only, the 

roposed solution was not evaluated on liver cancer patients un- 

ergoing radiotherapy treatment. As those cases can present higher 

ariability in anatomical appearance and breathing patterns, due 

o the presence of tumors or other pathologies, the robustness of 

ur framework needs to be validated on this type of data in future 

tudies. Moreover, as explained in Section 2.1 , this study assumes 

hat the reference volumes used in our experiments are directly 

aken from the acquired 3D+t sequences. The surrogate 2D images 

re also assumed to be the central slices of the volumes within the 

D+t sequences. In a clinical setting, this wouldn’t be the case as 

here would be no prior 3D+t acquisition. However, we do not be- 

ieve the framework’s performance will be affected as long as the 

 re f and surrogate image show the same anatomical location and 

eld-of-view. This aspect would need to be validated in future ex- 

eriments. 

Future studies will include the addition of a temporal prediction 

echanism, thus increasing the horizon for temporal sequences, 

ith the evaluation on longer sequences, application for different 

maging modalities as well as general improvements to individual 

omponents such as the rigid alignment module and motion mod- 
13 
lling network. A prospective study with radiotherapy patients is 

lanned to further evaluate in a clinical context. 
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